1,524 research outputs found

    Atomic spectrometry updates. Review of advances in elemental speciation

    Get PDF
    This is the sixth Atomic Spectrometry Update (ASU) to focus specifically on advances in elemental speciation and covers a period of approximately 12 months from December 2012. This review deals with all aspects of the analytical speciation methods developed for: the determination of oxidation states; organometallic compounds; coordination compounds; metal and heteroatom- containing biomolecules, including metalloproteins, proteins, peptides and amino acids; and the use of metal-tagging to facilitate detection via atomic spectrometry. The review does not specifically deal with fractionation, sometimes termed operationally defined speciation. As with all ASU reviews 1-5 the coverage of the topic is confined to those methods that incorporate atomic spectrometry as the measurement technique. However, molecular MS techniques are covered where the use is in parallel or series with atomic spectrometry. As with previous years As and Se speciation continues to dominate current literature. However, research is moving further towards understanding the toxicological and beneficial mechanisms of these two elements. There is also in increase in macromolecular analysis, with a decrease in detection limits for some methodologies, which increases the potential clinical use of the techniques employed. The use of both atomic and molecular spectrometry is well developed in these fields, highlighting the interdisciplinary nature of today's research environment. The trend towards lower cost more rapid analytical methods, often involving non-chromatographic speciation, also continues apace. This journal is Β© 2014 the Partner Organisations

    Atomic spectrometry update: Review of advances in elemental speciation

    Get PDF
    This is the 12th Atomic Spectrometry Update (ASU) to focus on advances in elemental speciation and covers a period of approximately 12 months from December 2018. This ASU review deals with all aspects of the analytical atomic spectrometry speciation methods developed for: the determination of oxidation states; organometallic compounds; coordination compounds; metal and heteroatom-containing biomolecules, including metalloproteins, proteins, peptides and amino acids; and the use of metal-tagging to facilitate detection via atomic spectrometry. As with all ASU reviews the focus of the research reviewed includes those methods that incorporate atomic spectrometry as the measurement technique. However, because speciation analysis is inherently focused on the relationship between the metal(loid) atom and the organic moiety it is bound to, or incorporated within, atomic spectrometry alone cannot be the sole analytical approach of interest. For this reason molecular detection techniques are also included where they have provided a complementary approach to speciation analysis. This year the number of publications concerning As speciation has fallen by about half, as have studies on Se speciation. Growth areas continue to be Hg and β€˜biomolecules’, with the number of reports concerning halogen and sulfur speciation also rising. The number of elements covered this year is again over 20, showing the breadth of the elemental speciation field

    Combined uncertainty estimation for the determination of the dissolved iron amount content in seawater using flow injection with chemiluminescence detection

    Get PDF
    This work assesses the components contributing to the combined uncertainty budget associated with the measurement of the Fe amount content by flow injection chemiluminescence (FI-CL) in <0.2 ΞΌm filtered and acidified seawater samples. Amounts of loaded standard solutions and samples were determined gravimetrically by differential weighing. Up to 5% variations in the loaded masses were observed during measurements, in contradiction to the usual assumptions made when operating under constant loading time conditions. Hence signal intensities (V) were normalised to the loaded mass and plots of average normalized intensities (in V kg-1) versus values of the Fe amount content (in nmol kg-1) added to a β€˜low level’ iron seawater matrix were used to produce the calibration graphs. The measurement procedure implemented and the uncertainty estimation process developed were validated from the agreement obtained with consensus values for three SAFe and GEOTRACES reference materials (D2, GS and GD). Relative expanded uncertainties for peak height and peak area based results were estimated to be around 12% and 10% (k=2) respectively. The most important contributory factors were the uncertainty on the sensitivity coefficient (i.e. calibration slope) and within-sequence-stability (i.e. the signal stability measured over several hours of operation; in this case 32 h). Therefore, an uncertainty estimation based on the intensity repeatability alone, as is often done in FI-CL studies, is not a realistic estimation of the overall uncertainty of the procedure.JRC.D.2-Standards for Innovation and sustainable Developmen

    Atomic spectrometry update: review of advances in elemental speciation

    Get PDF
    crosscheck: This document is CrossCheck deposited copyright_licence: The Royal Society of Chemistry has an exclusive publication licence for this journal history: Received 13 June 2017; Advance Article published 23 June 2017; Version of Record published 5 July 201

    Uncertainty associated with the leaching of aerosol filters for the determination of metals in aerosol particulate matter using collision/reaction cell ICP-MS detection

    Get PDF
    Β© 2019 Elsevier B.V. High quality observational data with a firm uncertainty assessment are essential for the proper validation of biogeochemical models for trace metals such as iron. Typically, concentrations of these metals are very low in oceanic waters (nM and sub nM) and ICP-MS is therefore a favoured technique for quantitative analysis. Uncertainties in the measurement step are generally well constrained, even at sub-nM concentrations. However, the measurement step is only part of the overall procedure. For the determination of trace metal solubilities from aerosols in the surface ocean, aerosol collection on a filter paper followed by a leaching procedure is likely to make a significant contribution to the overall uncertainty. This paper quantifies the uncertainties for key trace metals (cobalt, iron, lead and vanadium), together with aluminium as a reference element, for a controlled, flow through laboratory leaching procedure using filters collected from three different sampling sites (Tudor Hill (Bermuda), Heraklion (Crete) and Tel-Shikmona (Israel)) and water, glucuronic acid and desferrioxamine B as leachants. Relative expanded uncertainties were in the range of 12–29% for cobalt, 12–62% for iron, 13–45% for lead and 5–11% for vanadium. Fractional solubilities for iron ranged from 0.2 Β± 0.1% to 16.9 Β± 3.5%

    TEMPRANILLO is a regulator of juvenility in plants

    Get PDF
    Many plants are incapable of flowering in inductive daylengths during the early juvenile vegetative phase (JVP). Arabidopsis mutants with reduced expression of TEMPRANILLO (TEM), a repressor of FLOWERING LOCUS T (FT) had a shorter JVP than wild-type plants. Reciprocal changes in mRNA expression of TEM and FT were observed in both Arabidopsis and antirrhinum, which correlated with the length of the JVP. FT expression was induced just prior to the end of the JVP and levels of TEM1 mRNA declined rapidly at the time when FT mRNA levels were shown to increase. TEM orthologs were isolated from antirrhinum (AmTEM) and olive (OeTEM) and were expressed most highly during their juvenile phase. AmTEM functionally complemented AtTEM1 in the tem1 mutant and over-expression of AmTEM prolonged the JVP through repression of FT and CONSTANS (CO). We propose that TEM may have a general role in regulating JVP in herbaceous and woody species

    CR1 Knops blood group alleles are not associated with severe malaria in the Gambia

    Get PDF
    The Knops blood group antigen erythrocyte polymorphisms have been associated with reduced falciparum malaria-based in vitro rosette formation (putative malaria virulence factor). Having previously identified single-nucleotide polymorphisms (SNPs) in the human complement receptor 1 (CR1/CD35) gene underlying the Knops antithetical antigens Sl1/Sl2 and McC(a)/McC(b), we have now performed genotype comparisons to test associations between these two molecular variants and severe malaria in West African children living in the Gambia. While SNPs associated with Sl:2 and McC(b+) were equally distributed among malaria-infected children with severe malaria and control children not infected with malaria parasites, high allele frequencies for Sl 2 (0.800, 1,365/1,706) and McC(b) (0.385, 658/1706) were observed. Further, when compared to the Sl 1/McC(a) allele observed in all populations, the African Sl 2/McC(b) allele appears to have evolved as a result of positive selection (modified Nei-Gojobori test Ka-Ks/s.e.=1.77, P-value &lt;0.05). Given the role of CR1 in host defense, our findings suggest that Sl 2 and McC(b) have arisen to confer a selective advantage against infectious disease that, in view of these case-control study data, was not solely Plasmodium falciparum malaria. Factors underlying the lack of association between Sl 2 and McC(b) with severe malaria may involve variation in CR1 expression levels

    Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator noccaea caerulescens

    Get PDF
    Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOSTM clones with insert sizes ~20–40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs. Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter b-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue. This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae

    Alteration of the bZIP60/IRE1 Pathway Affects Plant Response to ER Stress in Arabidopsis thaliana

    Get PDF
    The Unfolded Protein Response (UPR) is elicited under cellular and environmental stress conditions that disrupt protein folding in the endoplasmic reticulum (ER). Through the transcriptional induction of genes encoding ER resident chaperones and proteins involved in folding, the pathway contributes to alleviating ER stress by increasing the folding capacity in the ER. Similarly to other eukaryotic systems, one arm of the UPR in Arabidopsis is set off by a non-conventional splicing event mediated by ribonuclease kinase IRE1b. The enzyme specifically targets mature bZIP60 RNA for cleavage, which results in a novel splice variant encoding a nuclear localized transcription factor. Although it is clear that this molecular switch widely affects the transcriptome, its exact role in overall plant response to stress has not been established and mutant approaches have not provided much insight. In this study, we took a transgenic approach to manipulate the pathway in positive and negative fashions. Our data show that the ER-resident chaperone BiP accumulates differentially depending on the level of activation of the pathway. In addition, phenotypes of the transgenic lines suggest that BiP accumulation is positively correlated with plant tolerance to chronic ER stress
    • …
    corecore